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Basic setup: A gravity-powered
neutrino bomb

@ Chandrasekhar: an object with mass greater than cannot support itself
against gravitational collapse by degeneracy pressure

@ Electrons near Fermi surface become relativistic and EOS becomes unstable to

collapse. In natural units, the criterion is (1).
@ Central Fe core ( ) collapses reaching , until nuclear densities,
3 3

@ The resulting protoneutron star (~ a few * 10 km in radius) traps neutrinos. The binding
energy is stored mostly in the Fermi seas of electrons & electron neutrinos

@ Neutrinos diffuse out on the time scale of a few seconds:
@ carry away > 99% of all released gravitational energy.
@ Approximately is converted into a burst of ~10 MeV neutrinos

@ 1058 neutrinos in a few seconds is definitely intensity frontier!



Basic setup: Visible explosion

@ The inner core remains subsonic, while the outer core is
falling at supersonic speeds. On the boundary, a shock front
is formed, first inside the neutrinosphere.

@ It moves out, breaks through the neutrinosphere, then loses
energy to neutrino emission and disintegration of Iron.

@ The shock stalls at ~ 200 km. Complicated interplay between
volume energy loss and gain from streaming neutrinos on the
bottom: vigorous convection.

@ The shock revives during ~1 sec. Blows off the rest of the
star with energy of about 105! ergs, about the binding energy
of the envelope. This gives rise fo a visible explosion.



Stages of the explosion

Collapse 1y, burst Kelvin—Helmholtz cooling
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Modern 3D simulations:
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Basic setup: observations

4 erg emitted in a burst of eV neutrinos, roughly
equipartitioned between flavors ->

@ Assuming , expected fluence on Earth is

@ CC cross section on Ar ; detector has moles of Ar

® Number of interactions

@ Details depend on the distance to the SN ( [72), emitted energy spectra,
progenitor mass, flavor oscillations, etc

@ But the main point is that a galactic core-collapse supernova will create many
thousands of ve interactions in the DUNE far detector

@ And events in Super/HyperK.



Refresher: Whats the goal here?

@ With such high
statistics, it will be
possible to study not
only the total burst
signal, but to track its
time evolution second
by second

Time-dependent signal
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Why should we care?
"Theory of everything™!

@ Conditions not reproducible on Earth make them unique
laboratories for particle and nuclear physics

@ From axions, majorons, dark photons, eftc, to EOS of nuclear
matter, to collective flavor oscillations in dense neutrino
gases

® The universe around us: Simulations of the galactic disk show
that supernova feedback is crucial to its structure.

@ Origin of stuff: Supernovae synthesize and disperse heavy
elements.

@ BBN created hydrogen and helium. Chemical elements
around us were once inside a star
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Flavor oscillations:

@ Oscillations will imprint
information from the
inner regions of the
explosion on the
observed spectra

@ We need to know (i)
what to look for and (ii)
how the detector
performance will affect
what can be seen

not optional!
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MSW effects in SN

® Matter effect leads to
adiabatic evolution of states
in the Sun: measured!

@ In SN, higher densities ->
two resonance regions

@ Using known masses and
mixing angles, we can check

that both are adiabatic in
the progenitor profile

® A, ~ 6 km for E=20 MeV,

ﬂpmfile o 104 km'

sin®26,, ~ 0.084



MSW effects in SN

@ The is infinitely thin
compared to the neutrino
oscillation length ->
completely non-adiabatic

@ Electron neutrinos, which
before were swept info 15

now go into v,.

@ U, has a higher probability
of being measured as v,
than v

D

-> If original v, flux was colder, observed flux gets colder



Oscillations imprint information
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@ R. Schirato and G. Fuller (2002): the relevant
nonadiabatic feature is the expanding shock front



Good project for a grad
student?

® Many things about SN flavor
oscillations are complicated!

@ This shock effect seems like one of
the easier things that one could use
to introduce students to the subject ===
without “shocking” them right away

@ ... Of course, once you start looking B
closer, all sorts of interesting things
might come up




First, fo model the signal, one has to
take into account the full oscillation
physics which is extremely rich
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Different oscillation
phenomena

@ Even if we dont focus on the other oscillation phenomena, we still
need to reasonably include them

@ The plan is to take a physically meaningful, representative calculation
for each effect

@ For turbulence, follow the approach of AF & A. Gruzinov, astro-ph/
0607244: infer the amplitfude of small-scale fluctuations using
Kolmogorov cascade

@ Typical signature: time-dependent flavor depolarization

@ For collective oscillations, do multi-angle, spherically symmetric
calculations with spectra from modern simulations

@ Typical signature: high-energy spectral split
@ For fast collective, see Huaiyu Duans talk

@ Typical signature is unavailable as of foday



What about matter profiles? Published
simulations differ on density features!
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e Simulations by Arcones, Janka, and Scheck (2006)

® The most important feature is a termination shock of the neutrino-
driven wind close to the profo-neutron star

e Impacts MSW earlier, at 2-3 seconds, when fluxes are higher




Time-dependent signal
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Yet another simulation
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e Fischer, Whitehouse, Mezzacappa, Thielemann, Liebendorfer 0908.1871 [astro-ph.HE]
e The termination shock feature intermittent?

e Absent at 1 second, present by 3 seconds. How is this possible?

e The paper only says that they "agree with the others”



What's going on?

® Numerical artifacts? Real
PhYSiCS? and emission via

Neutrino absorption VetN—>p+e
Ve +p—n-+ et

® To understand th iS, Payel - Cooling rate ~T®  As T~1/r cooling decreases with radius as ~1/r®
MUkhOPCld hyay we bUI “, - Heating ~1/r? Requires free protons and neutrons
/
our own physics model of Cooling
the neutrino-driven
outflow (“wind”)

PNS

@ This outflow is created Heating
when streaming neufrinos
deposit energy above the |
neutrinosphere, outside <——> Region of heating Radius r
of the “gain radius”




Nature of the outflow

@ The material heated by neutrinos is then
launched outwards and eventually runs info
the expanding shell

@ The question is whether it is accelerated to
supersonic speeds (“wind”) or remains
subsonic ("breeze”)

@ Supersonic means termination shock,
subsonic gives a smooth profile



Underlying equations
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Mass Conservation

d(r?pv)

drr?pv = M,
™ pv o

d(4rr?v(4aT?3/3
M Entropy generation

dr

Physical conditions in the outflow: Density dominated by
baryons, pressure dominated by radiation.

Hydrodynamic equations are known (Duncan et al, Qian &
Woosley), but, somehow, the physical boundary conditions
have not been systematically treated.



What do I mean by
that?

@ Duncan, Shapiro and Wasserman (1986) treat the
outflow following the framework for stellar winds,
which expand in practically empty space and always
reach supersonic speeds.

® But the neutrino-driven wind in a SN runs into the
back of the expanding material!

@ For sufficiently high density of this material, the
outflow can be "quenched”, never reaching the speed
of sound. In this case, the entire flow is causally
connected.



A few technical points

@ Entropy is gained in
the first 100 km, due
to neutrino heating.
Typical values are , N
50-100 per baryon ‘ 108 10° 10"
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@ Outside of the
heating region the
system simplifies o a dv _ v2v3—GM/r
single ODE dr vt




Supersonic wind profile

Avg. Energy = 20 MeV, L = 8.0*10°! erg/s, R = 11 km, Mass = 1.4 Mg Avg. Energy = 20 MeV, L = 8.0%10°! erg/s, R = 11 km, Mass = 1.4 Mg,
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In a realistic setup, termination shock.

Qian, Woosley (1996), But until the outflow hits the shock, it

Thompson, Burrows, Mayer thinks it’s expanding into empty space.
(2001)



Subsonic breeze profiles

L=8%10"" erg/s, E,, =20 MeV,M = 14 M, Radius = 11 km L=8%10"" erg/s, E,,, =20 MeV, M = 1.4 M,,,, Radius = 11 km
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Everything is causally connected.
The beginning of the wind knows it will
flow into a finite-density medium



Critical breeze profile

Breeze velocity and local sound veocity
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Critical Breeze velocity curve : Outflow velocity just touches local sound speed at one point.

Corresponds to a critical (minimal) far density : perit

Notice the kink, suggestive of a phase transition



Phase diagram

dv  v2vi—GM/r

dr ro v?—v?

@ Simple-looking ODE is non-
linear, has a mind of its own

@ The sonic point is a critical
(saddle) point.

@ Below it is a family of
subsonic curves,
corresponding fo various
final densities

@ The supersonic solution goes
through the critical point
(unique)




Summary of our findings

@ In the space of physical parameters, the boundary
between subsonic and supersonic outflows is a phase
transition

@ We mapped out critical values of basic parameters:
neutrino luminosity, average energy, radius and mass of
the protoneutron star, and density in the expanding shock

@ Turns ouf, for physical conditions in the realistic
explosions, the system is indeed close to critical

@ This makes the neutrino signal a very sensitive probe of
what exactly happens close to the protoneutron star!



Approximate scaling law
for critical density

Numerically
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Our model vs publishead
simulations
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@ We can reconcile existing
simulations: for conditions of
Arcones et al (2006), there are
indeed strong shocks through
the explosion
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@ For Fisher et al (2009), we .
indeed find that the outflow Fischieretial (2009)
changes its character in the e ime=caies
first three seconds

@ For multi-d simulations, we
understand why they dont see
shocks. However, if they were to
run longer, we predict that
shocks may appear for them

Vartanyan, Burrows, et al (2018)



Finally, neutrino signals

@ As mentioned, collective
oscillations are modeled by
our spherically symmetric,
mulfiangle code.

@ The result is a spectral
split feature that is
clearly visible in the mass
basis, but not in the flavor
basis.
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The shock reveals
the hidden split ;-)

Event rates per MeV
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Some comments

@ The smoking-gun modulation
signal exists only in the
neutrino channel -> Can — iy ot — Colactiv and shook

only be seen at DUNE

@ The moving feature clearly
cannot be of thermal origin
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@ Water is still useful, to
monitor antineutrinos,
where no features like that
are expected due to
oscillations T gy e




What about
nucleosynthesis?

@ One would like a systematic
study, modeling the impact of
wind-to-breeze transition on
nucleosynthetic yields. No one
has done it yet.
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@ BUT, people have considered
parametric models, where the
outflow is modulated "by hand”
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@ Comparing with our resulfs, we
find that our subsonic solution

relative to solar

creates optimal nucleosynthesis

conditions for the vp—process
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More details on the
nucleosynthesis

@ The reactions are called vp—process.

@ C. Frohlich et al, astro-ph/0511376

@ The only known way to make certain proton- 123210100 km]

rich isotopes with mass numbers A>64
@ E.g., 9294Mo and 2¢8Ru

@ Requires strong neutrino flux, otherwise
stuck on perfect for neutfrino-driven
outflows ¢4Ge (half-life 64 s)

@ But default simulations using supersonic
winds have problems, because the (n,p)
reaction on ¢4Ge has a half-life of 0.25 s at
2 GK. Subsonic flow fo the rescue!




Summary and outlook

@ SNB signal will provide a unique probe of the physical conditions close
to the surface of the protoneutron star: it will have imprints of the
nature of the high-entropy outflow (neutrino-driven “wind” or “breeze”)

@ Assuming normal hierachy, can only be seen at DUNE (nu-e sensitivity)

@ The physics of this outflow is different from usual stellar winds: it is on
the boundary between subsonic and supersonic

@ We systematically mapped out this transition in ferms of physical
parameters: neutrino luminosities and energies, radius and mass of the

PNS

@ Subsonic outflows turn out to have ideal conditions to vp—process
nucleosynthesis. Thus, neutrino signal can tell us about conditions for
nucleosynthesis.



